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ABSTRACT: Dynamic data reconciliation (DDR) is used to
reduce the uncertainties in process measurement. Conventional
data reconciliation theories and methods are based on least-
squares estimation, whose conditions are hard to meet in real-
world applications. Since least-squares estimators can be made
robust by equivalent weight, many works concentrated on robust
estimators and their performance in data reconciliation. However,
robust least-squares algorithm is still unable to detect gross errors
in low-redundancy variables. In this article, our work takes a step
further in improving the robustness of the Huber estimator by
taking structural redundancy into consideration. Modifications on
influence function and weight function are made by involving local
redundancy and rejection interval. The detectivity of gross error in
low-redundant variables is increased. Combined with the above improvement and then taking advantage of online filtering, a
novel robust dynamic data reconciliation algorithm is proposed. Case studies demonstrate the superiority of this methodology.

1. INTRODUCTION

Linear dynamic data reconciliation (LDDR) is a way of
estimating variables on the basis of measurements and dynamic
equilibrium equations. A dynamic material balance model can
be represented by continuous-state space equations or a
sampled input−output representation after discretization.
Many other studies of LDDR have been carried out, but
most of them did not properly deal with the complexity of
dynamic systems and the demand for timeliness. Almasy
(1990)1 transformed the dynamic system balance problem into
Kalman filtering problem by discretizing input and output
variables. Darouach and Zasadzinski (1991)2 transformed the
LDDR into an algebraic problem by using the forward
difference approximation method and obtained an iterative
algorithm to avoid the truncation error and matrix singularity
problem. The integral approach proposed by Bagajewicz and
Jiang (1997)3 provides another choice for solving the problem.
However, it is difficult to separate a signal from noise.
Bagajewicz (2000)4 also applies this method to steady-state
data reconciliation (SSDR) and DDR, proving that for linear
systems without tank flow, the performance of both
approaches is similar in the absence of biases and leaks.
Almasy (1990)1 studied DDR based on Kalman filter and

proved that Kalman filter equations are convenient for solving
LDDR. Although Kalman filter has great characteristics in
theory, it has to suppose that the state variables are self-
correlated. To solve the general LDDR problem, the least-
squares principles of linear SSDR for dynamic systems are
extended. The new solution is based on the concept of

generalized linear dynamic model, which was first introduced
to data reconciliation (DR) by Darouach and Zasadzinski
(1991).2 Generalized linear dynamic model refers to the model
formulation Dxk+1 = Bxk, which contains more state variables
than constraints. Because D is singular, the formulation cannot
be written in a standard state space form. Obviously standard
Kalman filter is not suitable for this situation, but we can utilize
the recursive form of Kalman filter, which is more convenient
for real-time processing. Bai (2006)5 pointed out that DDR is
actually a kind of filter technique. Based on the new model
form, many studies have been working on a new recursive
filtering algorithm. However, the model is quite huge, and the
derivation procedure is complex and tedious.6 Rollins and
Devanathan (1993)7 adopted the same model formulation and
proposed a constrained least-squares estimator, making use of
measurements at continuous adjacent time instants. Xu
(2010)8 proposed a new framework for generalized dynamic
system, whose core part is a simplified least-squares
formulation to represent the filtering problem.
The least-squares estimator (LSE) is the most widely used

parameter estimation method. But the lack of robustness
makes it imperfect in practice. Johnston and Kramer (1995)9

reported the feasibility and better performance of robust
estimators as the objective function in data reconciliation
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especially when measurements are contaminated by gross
errors. In the literature, DDR problems were addressed using
fair function (FF),10 three-part redescending estimator
(TPRE),11 correntropy (CO) function,12 and so on.
Subsequently, many studies have been conducted on robust
estimators and their performance in data reconciliation.
Including Arora and Biegler (2001),13 many studies have
demonstrated the potential of robust statistics developed by
Huber (1981),14 which attempts accurate estimation of
statistical parameters. However, according to Özyurt
(2004),15the influence function for weighted least-squares
(WLS) is proportional to measurement error. The occurrence
of gross errors will lead to incorrect estimations, so it is
obviously not a robust estimator. But the research on quasi-
weighted least-squares estimator (QWLS)16 improved the
robustness of WLS, which retained the advantage of WLS and,
furthermore, enhanced the practicality in the presence of gross
errors. A unified view on robust data reconciliation is provided
using generalized objective functions within a probabilistic
framework.17 M-estimators are a maximum likelihood type
estimator, which is one of the three main classes of robust
estimators. Based on the principle of equivalent weights, M-
estimator can be transformed into the form of classical least-
squares. In other words, classical LSE can be made more
robust by using equivalent weights.18 This method not only
improves the robustness of classical estimators but also
preserves the advantages of simplicity in mathematical forms
and computation procedure. Particularly, many well-developed
mathematical models and computing methods based on least-
squares are still applicable. The famous Huber estimator is the
maximum likelihood estimation of the Huber function.19 The
Huber estimator is a kind of minimax estimation, which laid
the foundation for location robust estimation. Huber20 had
made his first step toward attempting accurate estimation of
statistical parameters in the presence of gross errors. Since that,
robust estimators have been widely used in mathematical
statistics, communication engineering, exploration mapping,
and so on. From this point of view, data processing derived
from Huber estimation in this paper is essentially a new robust
least-squares (RLS) methodology, which is named general
robust least-squares (GRLS).
After Huber, many researchers had paid much attention to

improving other M-estimators. Ni (2009)21 proposed two
computational approaches for regression with stochastically
bounded noise (RSBN). Hampel (2011)22 focused on a
smoothing principle for the Huber and other location M-
estimators. Directed toward the correction of endogeneity
problems in linear models, Kim (2007)23 proposed a new
robust estimator in the context of two-stage estimation
methods. A new target function was taken into consideration
based on robust M-estimators by Jin (2012).24 Zhang (2010)16

has proposed a quasi-weighted least-squares (QWLS)
estimator to promote the performance of LSE. Claudia
(2017)25 distinguished systemic errors into outliers, biases,
and drifts and also studied the performance of different M-
estimators. However, few works have been carried out on the
improvement of Huber estimator strategies for linear
processes. The effectiveness of conventional algorithm depends
on the reliability of approximated estimation solutions and
reasonability of weight function during iterations. Conven-
tional weight function applies variances with prior probability
distributing measurement, disregarding the influence of
robustness in structure space. Zhou had pointed out that the

Huber estimator has no limitations on location of spatial
distribution of observations.18 In other words, gross errors may
hardly be shown by residuals, but the introduction of local
redundancy would raise the detectivity of gross errors
especially for low-redundancy variables.
The novel GRLS estimator is proposed for LDDR, which

has good performance in low-redundancy system and detecting
gross errors. This algorithm focuses on making Huber
estimator more robust based on the in-depth discussion on
advantages and disadvantages of classical LSE. In this article,
we improved the most important function of Huber
estimation, the influence function, and weight function by
considering construction redundancy. The algorithm proce-
dure is combined with online filtering for performing online
optimization easily. Due to the lack of accurate instruments
and regular overhaul, low-redundant variables commonly exist,
which has been a big challenge for DDR. The algorithm has
good performance, especially for low-redundant variables. To
avoid miscalculation introduced by the newly used local
redundancy, the procedure has also been improved by
combining constraints extracted from real process. The process
has been tested in several cases and dozens of situations, not
only listed in the article. The industrial case presented here is
persuasive.

2. PROBLEM STATEMENT
In this section, we focus on improving Huber estimator. The
main part of Huber distribution obeys normal distribution
N(0, σ2), and the disturbance part obeys Laplace distribu-
tion.18 The Huber estimator is the maximum likelihood
estimation of the Huber function. Thus, the loss function of
the Huber estimator is
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The weight function of Huber estimator is
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where vi stands for residuals of the ith variablesvi = x̃i − x̂i ; zi
stands for measurements of the ith variable; x̂i stands for
reconciled values of the ith variable; σi stands for standard
deviation of the ith variable; and c is a constant for Huber
estimator, which is determined by trade-off between robustness
and estimation efficiency. Estimation efficiency is the ratio of
Cramer boundary and asymptotic variance. For Huber
estimator, the efficiency is

c
c c c c c

eff
1

Var
2 ( ) 1

2 ( ) 1 2 ( ) 2 (1 ( ))

2

2ϕ
= = [ Φ − ]

Φ − − + − Φ
(4)
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Φ(c) and ϕ(c) stand for distribution function and probability
density value of standard normal distribution at point c. When
c = 1.4, eff = 95.5%. In actual calculation, it should be
determined by the rate of gross error δ:

c
c

c
1

1
2 ( ) 1 2

( )
δ

ϕ
−

= Φ − +
(5)

δ is always between 1% and 10%, so c is generally between 1
and 2. Mostly we choose c as around 1.5.
The effect of the Huber estimator is almost the same as LSE

for tiny residuals. Thus, the estimator has high efficiency
derived from Gaussian distribution. When the residuals are
large, the performance of Huber estimator is approximately the
same as least absolute deviations estimator. If gross errors
appear, bounded weight will be assigned to the measurement
biases to narrow the diffusion of gross error. However, for low-
redundant observation, Huber estimator could not reflect its
gross error by residual, which may lead to miscalculation. To
preserve the advantage of Huber estimation, we propose a
novel RLS estimator based on the improvement of the Huber
one.
First, the influence function in eq 2 will be modified. Not

only was the priori measurement variance replaced by
measurement residual variance, but also the added local
redundancy would be used to improve robustness in design
space. The modified function will increase the detection rate of
gross error, especially for low-redundancy variables. Second,
the weight function eq 3 of Huber estimator will be
reformulated to get rid of the contaminated measurements.
Lastly, to weaken the disadvantage of introducing local
redundancy, a concrete iterative flow of the novel robust
LSE will be described in detail in section 4. The proposed
improvements will be elaborated and proved to be effective in
the rest of this article.

3. GENERAL FORMULATION

RLS estimator combines the robust estimation principle with
the least-squares method. In the RLS estimation, a reasonable
unbiased estimation of ρ function will be constructed to reflect
the adopted scheme for abnormal measurements. This article
uses the Huber function, which is not very sensitive to
measurement biases. Some improvements based on the Huber
function lead to better robustness. The general formulation of
modeling and reconciliation is described in this section.
3.1. Local Redundancy. The intuitive concepts of

observability and redundancy are explained in the literature.
The concepts were first introduced by Kretsovalis and Mah
(1988).26 Carpentier et al. (1991)27 split the variables into
three classes according to redundancy, which is used to
formulate a well-conditioned least-squares problem and to
compute the values of redundant and calculable variables.
Modron (1992)28 offered a more complex classification of
quantities. Maronna and Arcas (2009)29 showed that the linear
reconciliation problem can be represented by a standard
multiple linear regression model, and the regression approach
suggests a natural measure of the redundancy of an
observation. Carpentier et al. (1991)27 first defined a measure
of the local redundancy, who called it error detectability of the
ith measurement. Here we call it local redundancy in the
following content. According to the footsteps, the concepts
and methods used in this article are presented below.

The general formulation of data reconciliation is always
described as eq 6. X̂ and Z stand for reconciled variable vector
and measured variable vector, respectively. Q = diag(σ1, ..., σn)
denotes the covariance matrix.

X Z Q X Z

AX A R X R

min( ) ( )

s.t. 0, ,m n n

T 1̂ − ̂ −

̂ = ∈ ∈

−

×
(6)

The measurement is generally described as follows.

z x i n, 1, ...,i i iε= + = (7)

where random noise εi ∼ N(0, σi) obeys normal distribution.
The analytical solutions are listed below.

X I QA AQA A Z( ( ) )T T 1̂ = − −
(8)

x I QA AQA A Qcov( ) ( ( ) )x
T T 1Σ = ̂ = −̂

−
(9)

Given the following definition of sensitivity and redundancy
respectively, H is redundancy.

M I QA AQA A( )T T 1= − −
(10)

H QA AQA A( )T T 1= −
(11)

We can obtain eq 12 and eq 13.

X MZ I H Z( )̂ = = − (12)

Z X HZ− ̂ = (13)

Here, M reflects how sensitive the results are to the
measurements. When Q is diagonal, the larger Hii is, the
smaller Mii is. From eq 10, we know that the smaller the
covariance matrix is, the more precise the estimator is.
When Q is diagonal, M and H have the following

characteristics: M and H are idempotent matrices, M2 = M,
H2 = H. 0 ≤ Hii ≤ 1, 0 ≤ Mii ≤ 1 (i = 1, 2, ..., m), where Hii is
the diagonal element of H and Mii is the diagonal element of
M.

R H H mtrace( )T
i

n

ii
1

∑= = =
= (14)

M M n mtrace( )
i

n

ii
1

∑= = −
= (15)

Here, RT is defined as system redundancy by Bagajewicz
(1999),30 which is also called overall redundancy by Wang
(2001).31 Hii is local redundancy which was first presented as
comprehensive redundancy by Wang (2001).31 However, they
have been ignoring the influence of the precision of sensors on
the system redundancy.
In the process of Figure 1, the precision of flowmeter of Si(i

= 1, ...., 9) is defined as λi. Suppose that λ3 is much higher than
others in the measurement system; the measurement of S3
could also be calculated by (S2, S7) or (S4, S6). However, it is
known that the precision of the calculated measurement must

Figure 1. A simple process network.
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be lower than any component, so λ3 would be much lower than
its real value, which cannot play the role of reconciliation.
Thus, the real precision of sensors should be concerned into
redundancy calculation. From eq 11, Hii involves both
measurement precision Q and network structure A; then the
system redundancy and measurement precision both have
influence on comprehensive redundancy. Hii is influential in
the adjacent variables, which is also named as local
redundancy.
It is noteworthy that the closer Hii is to 0, the smaller the

local redundancy of the variable is, and the greater its impact
on the reconciliation accuracy is. When Hii is equal to 0, Xi is
not a redundant variable and cannot be reconciled.
3.2. Linear Dynamic Process Modeling. The general

formulation of linear dynamic system is as follows:

W
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d
d

0

=

=

l
m
oooo

n
oooo (16)

W and F denote the measurements of inventory and flow; A
and C denote correlation coefficient matrix of capacity nodes
and noncapacity nodes.
The measurement vector is as follows:
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In the form of Kalman filter, Z denotes measurement vector
for all variables:
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Bagajewicz (1997)3 pointed out specific variable classifica-
tion methods for LDDR. According to the projection matrix
transformation proposed by Crowe (1983),32 unmeasured
variables in eq 16 can be eliminated. Then the general
formulation of the system is transformed into
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where all the matrices labeled with index R represent the
obtained measured variables after matrix transformation.
After a series of transformations, the above formulations are

transformed into the following difference equations, and the
detailed process is described in the Supporting Information.

EX i BX i( 1) ( )+ = (21)

Z i DX i v v( 1) ( 1) ( 1)R R+ = + − + (22)

where the coefficient matrix E, B, D are defined as follows:

E B T A A C C( )R R R Rs 2 1 1
1

2= [ − − ]−∂ (23)

B B 0R= [ ]∂ (24)

D I I I C CR R1 22 21 1
1

2= [ − ]−∂ (25)

where CR = [CR1⋮CR2]; note that CR1 is a square matrix and |
CR1| ≠ 0; correspondingly AR = [AR1⋮AR2]; Ts is sampling
period.

3.3. Robust Data Reconciliation. Xu and Rong (2010)8

proposed a simplified least-squares formulation to represent
the filtering problem in generalized linear dynamic systems. In
our work, the least-squares estimator was replaced by the
improved Huber estimator, and an iterative solution procedure
is designed. To initialize the problem, it is considered that only
random errors are present.
The generalized linear dynamic process model can be

transformed into eq 21 and eq 22 by deleting unmeasured
variables, eliminating algebraic equations, and discretization.
Following the former section, the dynamic models will be
combined with robust least-squares and filtering ideas.
Suppose the reconciliation results of time i were known as

X̂(i|i), and its covariance matrix is Σ(i|i), introducing auxiliary
variables Y, Ỹ, and ζ.

Y BX i EX i( ) ( 1)= = + (26)

Y BX i i( )̃ = ̂ | (27)

Y Yζ = − ̃ (28)

The covariance matrix of ζ is BΣ(i|i)BT.
Then, eq 21 and eq 22 can be transformed into eq 29.

Y
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In this form, dynamic data reconciliation model could be
reconstructed based on robust least-squares theory.18
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where ZR(i + 1) is measurement variable, vR,j(i + 1) is the
measurement bias of the jth variable on (i + 1)th moment, Q is
covariance matrix of measurements, Qjj is the jth diagonal
element of Q, and ρ(vR,j(i + 1)) is the loss function. The
adopted Huber function is as follows:
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The solution of problem 30is obtained as follows. The
derivative of eq 30 with respect to X(I + 1)is
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The solution of eq 32 is
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To be similar to filtering formulations, the covariance matrix
of X̂(i + 1|i + 1) should be iteratively calculated. Equation 30 is
essentially a robust least-squares problem. According to the
covariance matrix formulation of RLS estimator, the covariance
matrix of X̂(i + 1|i + 1) is as follows.
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Here Φ(·) uses ζ2/2, so

T B i i B( )1
T= Σ | (43)
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S1, S2 are defined as follows:
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So M is stated as

M E B i i B E D S D( )T T 1 T
2= [ Σ | ] +−

(47)

The covariance matrix becomes

i i
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Σ + | +
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(48)

As deduction above, the robust least-squares data reconcilia-
tion formulation is eq 35 and eq 48. The calculations of
relevant parameters P, T2, and S2 are listed in eqs 33, 34, 44,
and 46.

3.4. Procedure of Robust Data Reconciliation Using
the Huber eEstimator. The DDR method eliminates the
unmeasured variables by projection matrix and transforms it
into a discrete model. We define T as the reconciliation period,
and sampling frequency is presented by f. The algorithm
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process is given as following, and the flowchart of the

algorithm is presented in Figure 2.

Step 1: Initialize the sampling parameters period T and
frequency f, i = 0, k = 1, X̂(0) = X̃(0), c = 1.5;

Step 2: Transform and discretize the linear dynamic
process model as presented in section 3.2; calculate
coefficient matrix E, B, and D following eq 23, eq 24, and
eq 25;

Step 3: Calculate the reconciled value X̂(i|i) according to
eq 35;

Step 4: Calculate the residual v(i) = DX̂(i) − ZR(i);

Step 5: Calculate the test statistics i
v i( )

i
ε =

σ
| | ; if it is

greater than the constant c, assign the weight according
to eq 3;

Step 6: Calculate P̅(i) according to the obtained
residual;

Step 7: Recalculate X̂(i|i);

Step 8: If the Euclidean distance θx̂
(k+1) = ∥x̂(k+1) − x̂k∥ is

smaller than a tiny constant e, go on to the next step;
otherwise, k = k + 1 and go back to step 4;

Step 9: Calculate S2(i), T2(i), and the covariance matrix
of X̂(i);

Step 10: i = i + 1, calculate the dynamic data on the next
moment until exceeding given period.

4. SOLUTION STRATEGY
In this section, an improved algorithm is proposed to deal with
disadvantages of RLS estimator by taking both observation and
structural redundancy into account. The modified influence
function and weight function can help us recognize lower
redundant variables with gross errors. Meanwhile, the
disadvantage from introducing local redundancy would be
weakened by a redesigned iterative flow.

4.1. Improved Influence Function of the Huber
Estimator. Leverage is a measure of the distance between
the independent variable values of an observation and the
others. High-leverage points are observations made at extreme
or outliers of the independent variables. These points are lack
of neighboring observations, which means that the appropriate
regression model will approach to that special point. If the
errors are homoscedastic, an observation’s leverage score
determines the degree of noise in the model’s misprediction of
that observation. Conventional Huber estimator applied
variances from prior probability distribution of measurement
disregarding the importance of space robustness. It has no
limitations on location of spatial distribution of observations,
which leads to poor robustness in structure space. In this
section, we introduced local redundancy to take spatial
characteristics into consideration.
The definition of H has been given in eq 11. The

relationship of system redundancy RT and local redundancy
H i i h a s b e e n d e fi n e d i n e q 1 4
R H H mstrace( )T i

n
ii1= = ∑ == . Because Hii value just takes

part of system redundancy, it could not be the criterion of the
redundancy of system. Here average local redundancy is taken
as a threshold. If the local redundancy of variable is lower than
threshold, it is supposed to be weakly redundant.

H
n

H
m
n

1
trace( )m ii ii, = <

(49)

For linear system, the least-squares analytical solution is
listed in eq 8 and

v Z X QA AQA AZ HZ( )T T 1= − ̂ = =−
(50)

v stands for residuals, Z stands for measurements, X̂ stands for
reconciled values, the diagonal element of matrix Q is σi

2, and σi
stands for standard deviation.
From eq 50,

v x H x H xi i ii i
j i

ii

ii j∑= Δ = ̃ + ̃
≠ (51)

Hii is the local redundancy of the ith variable. If Hii is close
to zero, the ith variable is a weak redundancy variable. The
gross error of the ith measurement could not be reflected from
Δxi, so the weak redundancy variables would hide the gross
errors.
The local robustness properties of general penalized M-

estimators are studied via the influence function. The influence
function of Huber estimation is eq 2.
For variables in the [−c, c] range, function values would be

proportional to residual errors. Variables beyond this range are
regarded as suspect data. If there are low-redundancy variables,
the absolute value of residuals is much smaller than actual
errors. The gross errors would hide themselves in the normal
value section. Thus, the influence and weight functions should
be reformulated and improved.

Figure 2. Flowchart of robust least-squares dynamic data reconcilia-
tion.
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In this paper, local redundancy is introduced into the
calculation of residuals.

Q QA AQA AQ HQ( )x
T T 1= =Δ

−
(52)

Thus, we let Hr i ii i,σ σ= replace σi. Since 0 ≤ Hii ≤ 1, vj/σr,j
≥ vi/σi, and the lower the redundancy is, the smaller Hii is, the
larger vj/σr,j is. Then the influence function is formulated as

v

c H v H c

v c v H c

c H v H c
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/

/

/

i

ii i ii i

i i ii i

ii i ii i

φ

σ

σ
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− < −

− ≤ ≤

>

l

m

ooooooo

n

ooooooo (53)

By analyzing eq 53, the purpose of the optimization is to
shorten the linear part of former influence function.
4.2. Improved Weight Function of the Huber

Estimator. The weight function is the key to robust least-
squares. The improvement of the weight function should
consider both robustness and efficiency. Observations would
be divided into normal, available, and gross error. Based on the
three types of observation, the interval should be divided into
reservation, descending weight, and rejection intervals,
respectively.
The efficiency and reliability of robust least-squares data

reconciliation is mostly based on the descending weight
interval of influence function w(vi). Furthermore, for reliable
w(vi), the residuals should reflect measurement errors as much
as possible, so local redundancy Hiishould be large. The
reliability of initial iterative solution will be quite important.
When k = 0, x(0) = x̃, the initial value is just measurement
value. The residual is zero, so the first circulation is just
conventional least-squares estimation. The existence of gross
error would lead to bias. Meanwhile, conventional Huber
function has no rejection interval, which leads to worse
robustness. Considering all the above, the weight function is
revised as below.

w v
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(54)

In this weight function, the largest error statistics Yi will be
weighted zero in the rejection interval, which means that
would be marked and eliminated.
In addition, for actual industrial process, measurement

values usually have boundaries. These boundaries are always
used as constraints in optimizations. Thus, according to the
actual production, boundaries are also introduced to decide
whether the eliminated gross error in the last circulation is
reasonable. If not, the second largest value would replace the
maximum to be weighted zero.
4.3. Procedure of Novel Robust Least-Squares Data

Reconciliation. The procedure of novel robust least-squares
data reconciliation is as follows (Figure 3 ):

Step 1: Initialize the reconciliation period T and
sampling frequency f, and i = 0, k = 1; When k = 1,
the reconciled value x̂(1) = (I − QAT(AQAT)−1A)z, Q =
diag(σi

2); residual v(1) = x̂(1) − z = −Hz;
Step 2: Transform and then discretize the linear dynamic
process model, calculate the coefficient matrix E, B, D,
H;
Step 3: Calculate the reconciled value X̂(i|i) according to
eq 35;
Step 4: Calculate the residual v(i) = DX̂(i) − ZR(i);
Step 5: CalculateP̅(i) according to the obtained residual;
Step 6: RecalculateX̂(i|i);

Step 7: Calculate Yi
v i

H

( )

ii
k

i
( )

=
σ

| | ; if it is greater than a

constant c, then decrease its weight according to eq 54;

Figure 3. Flowchart of the new robust least-squares data
reconciliation.
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Step 8: Check if the value satisfies xL,i ≤ xi
(k) ≤ xU,i. If

not, remove the latest added one in gross error set S and
add the second suspicious one into S; otherwise, k = k +
1 and go back to step 4;
Step 9: If the Euclidean distance ηx̂

(k+1) = ∥x̂(k+1) − x̂k∥ is
smaller than a tiny constant e, go on to the next step;
otherwise, k = k + 1 and go back to step 4;
Step 10: Calculate S2(i), T2(i), and the covariance matrix
of X̂(i);
Step 11: i = i + 1, calculate the dynamic data on the next
moment until exceeding given period.

5. CASE STUDIES
The three methods, least-squares estimator, Huber estimator,
and GRLS estimator, are applied to the same process. The
following proposed performance indices are used to compare
the effectiveness and robustness of the above three algorithms.
The smaller the performance index η is, the better is the
performance of the algorithm.
The sum of square error (SSE) is defined as below.

x xSSE ( )
i

n

1

2∑= − ̂
= (55)

The overall power (OP) is an index for correct detection
rate of biased variable.

OP
number of bias identified correctly

number of bias simulated
=

(56)

The average type I error (AVTI) is an index for wrong
identification of a biased variable.

AVTI
number of bias indentified wrongly

number of bias simulated
=

(57)

The average type II error (AVTII) is a measure for deviation
failed to be identified.

AVTII
number of bias failed to be identified

number of bias simulated
=

(58)

Accumulative reconciled bias:

X X Q X X( ) ( )
i

n

i i i i1
1

,true
T 1

,true∑η = ̂ − ̂ −
=

−

(59)

Accumulative measured bias:

Z i X Q Z i X( ) ( )
i

n

R i R i2
1
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T 1

,true∑η = [ − ] [ − ]
=

−

(60)

Performance index:
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∑ [ − ] [ − ]
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−
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−

(61)

5.1. Numerical Case. The selected process is described in
Figure 1, which was first introduced by Bagajewicz and Jiang.3

It shows a simple process which contains nine flows and five
nodes, among which U1 ,U2 ,U3 , and U4 are capacity nodes
and U5 is noncapacity node. W and F represent volume and
flow, respectively. Sampling interval is 1 s. Measurements are
generated from actual data with normally distributed noise. To
simplify the process of matrix transformation, suppose all the
variables are measured. In the process of simulation, c = 1.5 for

Huber function and tiny constant e = 1e−6. Suppose the initial
state are

W(0) 100150100200 T= [ ]

F(0) 5152010510532 T= [ ]

The standard deviation of each variable is 10% of the initial
state.
The local redundancy of this system is

H 0.96640.97230.98540.98520.00240.0310

0.02680.01230.00250.01210.003500

ii

T

= [ ···

]

As stated in 3.1, when Hii = 0, Xi is a nonredundant variable
and could not be reconciled. So S8 and S9 are nonredundant.
S1 and S5 have the greatest influence on the reconciliation of
the system. The effect of Hii in the robust reconciliation would
be demonstrated afterward.

5.1.1. Scenario 1. In this scenario, we suppose that there is
no gross error. Figure 4 shows the reconciled data of W2 by

both LS and GRLS. The two curves almost coincide. Table 1
also shows that the effects of both methods are almost the
same when there is no gross error.

5.1.2. Scenario 2. The process network is the same as
presented in Figure 1. When the measurement of W2 has gross
errors from T5 to T7 and the magnitude of bias is 20, the
reconciliation results are shown as Figure 5. The performance
of conventional RLS are disappointing. Obviously, the GRLS
shows much more robustness against gross error. We can see
within three time-adjacent outliers, the GRLS algorithm has
good performance as expected.
The performance indices of different methods are listed in

Table 2; the GRLS shows better performance.
5.1.3. Scenario 3. When errors of W1 begin from T45 and

last at least 20 time cells, the amplitudes of the bias is still 20;
the results are shown in Figure 6 and Figure 7. Both W1 and

Figure 4. Reconciliation results comparison of W2 (no gross error).

Table 1. Performance Comparison in Scenario 1

η1 η2 η

LS 150.92 245.81 0.614
GRLS 148.74 245.81 0.605
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W2 are contaminated, and the validity of the traditional robust
least-squares algorithm has been affected. Our improved
algorithm shows better robustness which could also be
revealed from Table 3. From the trend of line chart of

GRLS, almost after the gross error lasts over 10 h, the gap
between GRLS and true data begins to be wider, but the gap
between GRLS and RLS begins to be smaller. For W1 the line
of GRLS coincides with RLS almost after 15 hours; for W2 the
line of GRLS coincides with RLS almost after 17 hours. So the
algorithm maybe break down when gross error lasts over 15
time units.

5.2. Comparative Case. A performance comparative
analysis has been conducted. It includes not only redescending
M-estimators like correntropy and adaptive Hampel but also
some filtering methods. The process is the same as the above
case in Figure 1.

5.2.1. Scenario 1. In this scenario, we suppose that there is
no gross error. Figure 8 shows the reconciled bias of W2 by the
listed five methods, including correntropy, Kalman filter,
GRLS, adaptive Hampel, and median filter. The results show
that when there is no gross error, the four methods have
almost the same performance, except for Kalman filter. The
performance is judged by accumulative reconciled bias and
listed in Table 4. The simulation time is 200 time units.

5.2.2. Scenario 2. In this scenario, we suppose that there are
four discontinuous gross errors. The time and amplitudes of
gross errors are (40, 45), (90, 25), (120, −35), and (180,
−13). Figure 9 shows the reconciled bias of W2 by the same
five methods. The results show that when gross error occurs,
the five methods show different performance. The accumu-
lative reconciled biases are listed in Table 5. The Kalman filter
has poor robustness with single gross error. Other methods
had almost the same performance. It demonstrates that GRLS
has good performance against gross error, and at least has the
same robustness as correntropy and median filter.

5.2.3. Scenario 3. In this scenario, we suppose that there are
continuous gross errors. First, deviation with amplitude around
25 and lasting for three time units is added to measurements of
W2. Figure 10a shows the reconciled bias of W2 by five
methods. The accumulative reconciled biases are listed in
Table 6. When the disturbance lasts for just three time units,
Kalman filter has performed worse, but others perform well.
When the disturbance lasts longer, adaptive Hampel and

median filter meet their breakdown point as shown in Figure
10b, Table 7.
When the distance lasts much more longer, the robustness of

adaptive Hampel is unstable. Hampel could not detect all the
gross errors sometimes. But the tendency of GRLS is still
stable as shown in Figure 10b and 10c, and the performance of
GRLS is a little better than correntropy (Table 8).
Above all, most of the time, GRLS has better robustness

than listed M-estimators and filters.
5.3. Industrial Case. The performance of the proposed

GRLS algorithm has been tested using a classical industrial
model first proposed by Serth (1986),33 which was a methanol
synthesis unit of a large chemical plant. The size and structure

Figure 5. Reconciliation results comparison of W2 (transient gross
error).

Table 2. Performance Comparison in Scenario 2

η1 η2 η

RLS 178.22 293.02 0.6082
GRLS 164.26 293.02 0.5606

Figure 6. Reconciliation results comparison of W1 (continuous gross
errors).

Figure 7. Reconciliation results comparison of W2 (continuous gross
errors).

Table 3. Performance Comparison in Scenario 3

η1 η2 η

RLS 457.25 783.79 0.5834
GRLS 260.74 783.79 0.3327
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of this case are similar to many industrial systems. A network
representation of the system consisting of 12 nodes and 28
streams is shown in Figure 11.
Assume that e7, e8, e11, e26 are contaminated by 50% gross

errors. True values, measurements, variances, redundancy, and
local redundancy are listed, respectively. Reconciliation results
of LS, RLS, and RLS-LR (robust least-squares considered local
redundancy) and GRLS are compared.
The detailed results are shown in the Supporting

Information. It can be concluded that the LSE algorithm has
the worst robustness. Our novel robust least-squares iterative
algorithm performs much better than other two. Traditional
MT test based on LSE recognized 24 gross errors, but only 4 of
them are right. Thus, the MT test based on LSE cannot locate

the gross error correctly. After comparing the last three robust
iterative algorithms, it is found that the RLS estimator detected
that e8, e26 contain gross errors, but e7, e11 are missing. We
found that the local redundancies of e7, e11 are relatively lower,
and the test statistics cannot reflect the gross error. The robust
least-squares algorithm considering space robustness has
detected gross errors in e1, e7, e8, e11, e22, e26, and e27.
Compared with the actual gross errors, there was no missing
report, but the false report increased first kinds of errors.
Because 0 ≤ Hii < 1, the introduction of Hii would decrease the
threshold of error detection and increase the detective rate of
gross error, but at the same time, it improves the error statistics
of other variables to some extent. The last column shows that

Figure 8. Reconciled bias of W2 by five methods (no gross errors).

Table 4. Accumulative Reconciled Bias of Five Methods

correntropy Kalman GRLS

adaptive
Hampel median

η1 570.2244 604.1043 568.7501 553.5601 561.6709

Figure 9. Reconciled bias of W2 by five methods (discontinuous gross errors).

Table 5. Accumulative Reconciled Bias of Five Methods

correntropy Kalman GRLS

adaptive
Hampel median

η1 568.5634 642.2739 566.1528 549.1144 566.9222
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Figure 10. (a) Reconciled bias of W2 (transient gross errors). (b) Reconciled bias of W2 (gross errors last for four time cells). (c) Reconciled bias
of W2 (gross errors last for six time cells).

Table 6. Accumulative Reconciled Bias of Five Methods

correntropy Kalman GRLS

adaptive
Hampel median

η1 570.3373 672.9898 564.3034 541.8952 562.7660

Table 7. Accumulative Reconciled Bias of Five Methods

correntropy Kalman GRLS

adaptive
Hampel median

η1 573.4068 699.7748 565.4687 597.7854 643.9940
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our improved algorithm has the best performance. It located
the four gross errors accurately.
After analyzing convergence, RLS iterated 15 times, RLS-LR

iterated 36 times, and GRLS iterated 9 times; our algorithm
costs the least computation resources and has good
convergence.
To prove the statistical significance of the algorithm, the

industrial case has been simulated 100 times. The average
AVTI and AVTII are listed in Table 9. From the statistical

results, since the conventional robust least-squares method has
no consideration of space construction and redundancy, it has
high possibility of misjudgment. Due to the introduction of
local redundancy, RLS-LR has higher AVTI. After improving
the algorithm flow, GRLS has added bounding constraints for
variables into the iteration, and the failure rate of gross error
detection is relatively much lower.

6. CONCLUSION
In this work, we propose a novel robust least-squares estimator
for linear DDR. The algorithm takes the structural robustness
into consideration via using local redundancy in influence
function and rejection interval in weight function. We redesign
an iterative flow to weaken the disadvantage from introducing
local redundancy. By taking advantage of the form of online
filtering, and combining the with the improvement of Huber
estimator, a novel robust dynamic data reconciliation algorithm
is proposed. The novel estimator has almost the same
effectiveness with RLS estimator without gross errors, but
much better performance when the measurements are
contaminated by gross errors. Compared to the conventional
LSE or RLS estimator, the GRLS estimator improves the

accuracy of DDR, and its application in industrial systems
could improve the quality and accuracy of large-scale
measurement. More challenges about implementing the
method in complex industrial processes will be addressed in
our future works.
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